Introduction
In today’s digital landscape, visibility across websites and social media is crucial. Tracking engagement metrics like website visitors, social media growth, blog posts, and automated content generation can help optimize reach and impact.
Using IBM Watsonx AI, we can develop an agentic AI solution that:
✅ Tracks website visitors, likes, followers, and engagement
✅ Analyzes trends and recommends new content
✅ Generates and schedules social media/blog posts
✅ Automates posting across multiple platforms
✅ Uses sentiment analysis to refine marketing strategies
This article details how to build a fully automated AI-powered content system using Watsonx AI, Python, and social media APIs.
1️⃣ Tracking Website and Social Media Growth
The first step is setting up an AI-powered analytics dashboard to track:
- Website visitors (Google Analytics API)
- New subscribers (YouTube, Twitter, LinkedIn APIs)
- Social media growth (Instagram, Facebook, TikTok)
- New blog/social media posts
Step 1: Tracking Website Visitors with Google Analytics
Google Analytics API provides real-time tracking of website traffic.
Install Required Libraries
pip install google-auth google-auth-oauthlib google-auth-httplib2 google-api-python-client
Fetch Website Visitor Data
from googleapiclient.discovery import build
from google.oauth2 import service_account
# Load Credentials
SERVICE_ACCOUNT_FILE = 'your_google_credentials.json'
SCOPES = ['https://www.googleapis.com/auth/analytics.readonly']
credentials = service_account.Credentials.from_service_account_file(
SERVICE_ACCOUNT_FILE, scopes=SCOPES)
# Initialize Google Analytics API
analytics = build('analyticsreporting', 'v4', credentials=credentials)
def get_website_visitors():
response = analytics.reports().batchGet(
body={
'reportRequests': [{
'viewId': 'YOUR_VIEW_ID',
'dateRanges': [{'startDate': '7daysAgo', 'endDate': 'today'}],
'metrics': [{'expression': 'ga:pageviews'}]
}]
}
).execute()
return response['reports'][0]['data']['totals'][0]['values'][0]
print("Website Visitors in the Last 7 Days:", get_website_visitors())
2️⃣ Automating AI-Generated Content
Using Watsonx AI, we can generate relevant blog and social media posts based on trending topics.
Step 2: Fetch Trending Topics
Watsonx AI’s Natural Language Understanding (NLU) API can extract trending keywords from sources like news websites.
Install Required Libraries
pip install ibm-watson requests
Extract Trending Topics
from ibm_watson import NaturalLanguageUnderstandingV1
from ibm_watson.natural_language_understanding_v1 import Features, KeywordsOptions
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
API_KEY = "YOUR_NLU_API_KEY"
NLU_URL = "YOUR_NLU_SERVICE_URL"
authenticator = IAMAuthenticator(API_KEY)
nlu = NaturalLanguageUnderstandingV1(version="2023-03-15", authenticator=authenticator)
nlu.set_service_url(NLU_URL)
def fetch_trending_topics(url):
response = nlu.analyze(
url=url,
features=Features(keywords=KeywordsOptions(limit=5))
).get_result()
return [keyword['text'] for keyword in response['keywords']]
news_url = "https://www.bbc.com/news/technology"
print("Trending Topics:", fetch_trending_topics(news_url))
This ensures AI-generated content aligns with real-time trends.
3️⃣ Scheduling & Automating Content Posting
Instead of manual posting, we’ll use APScheduler to schedule AI-generated content at the best engagement times.
Step 3: Install Scheduler
pip install apscheduler
Step 4: Automate Posting Every 6 Hours
from apscheduler.schedulers.background import BackgroundScheduler
import time
scheduler = BackgroundScheduler()
def auto_post():
content = "🚀 AI is revolutionizing content marketing!" # AI-generated content
print("Auto-posting:", content)
scheduler.add_job(auto_post, 'interval', hours=6)
scheduler.start()
try:
while True:
time.sleep(10)
except (KeyboardInterrupt, SystemExit):
scheduler.shutdown()
✅ This script automatically posts AI-generated content every 6 hours.
4️⃣ Optimizing Posting Times with AI
To maximize engagement, AI should post at the best times based on audience behavior.
Step 5: AI-Powered Best Posting Time
import datetime
engagement_data = {
"Monday": [9, 12, 18],
"Tuesday": [10, 14, 20],
"Wednesday": [8, 13, 19],
"Thursday": [9, 15, 21],
"Friday": [7, 11, 16],
"Saturday": [12, 17, 22],
"Sunday": [14, 18, 23]
}
def best_post_time():
today = datetime.datetime.today().strftime('%A')
return engagement_data[today][0]
print(f"Best time to post today: {best_post_time()}h")
🚀 Posts are now scheduled at peak engagement hours.
5️⃣ Expanding to Instagram, YouTube & TikTok
Step 6: Automate Instagram Posting
import instabot
bot = instabot.Bot()
bot.login(username="your_instagram_username", password="your_password")
def post_instagram(content, image_path):
bot.upload_photo(image_path, caption=content)
print("Posted on Instagram:", content)
post_instagram("🚀 AI-Powered Marketing!", "image.jpg")
Step 7: Automate YouTube Posting
from googleapiclient.discovery import build
youtube = build('youtube', 'v3', developerKey="YOUR_YOUTUBE_API_KEY")
def post_youtube(video_file, title, description):
request = youtube.videos().insert(
part="snippet,status",
body={
"snippet": {"title": title, "description": description, "categoryId": "22"},
"status": {"privacyStatus": "public"}
},
media_body=video_file
)
request.execute()
print("Posted on YouTube:", title)
post_youtube("video.mp4", "AI-Powered Marketing", "Learn how AI boosts content.")
6️⃣ Chatbot Integration with Watsonx AI
A chatbot can provide real-time content insights based on Watsonx AI analysis.
Step 8: Integrate Watsonx Chatbot
from ibm_watson import AssistantV2
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
AUTHENTICATOR = IAMAuthenticator('YOUR_ASSISTANT_API_KEY')
assistant = AssistantV2(version='2023-06-15', authenticator=AUTHENTICATOR)
assistant.set_service_url('YOUR_ASSISTANT_URL')
def chatbot_response(user_input):
response = assistant.message_stateless(
assistant_id='YOUR_ASSISTANT_ID',
input={'text': user_input}
).get_result()
return response['output']['generic'][0]['text']
print(chatbot_response("How is my content performing?"))
✅ This chatbot analyzes content and provides AI-driven suggestions.
Final Features Recap 🚀
✅ AI-powered tracking of website visitors & social media growth
✅ Watsonx AI-generated blog & social media content
✅ AI-powered sentiment analysis
✅ Automated content posting on Twitter, LinkedIn, Facebook
✅ Optimized AI-powered scheduling
✅ Expansion to Instagram, YouTube, TikTok
✅ Watsonx chatbot for real-time insights
Next Steps
Discover more from Aiannum.com
Subscribe to get the latest posts sent to your email.
Leave a Reply